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ABSTRACT

Nonlinear contributions to thermoelectricity are studied when large

temperature gradients are present in metals. A theory is presented to account for

these phenomena in the case of monovalent metals obeying a parabolic dispersion law.

Simple experiments are proposed in which nonlinear terms are relevant and produce

measurable effects.
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The conventional theory of thermoelectric phenomena is based on the concept of

local equilibrium and small deviations from global thermal equilibrium. In this

case, only linear relations between flows and thermodynamic forces should be

considered, and linear nonequilibrium thermodynamics is valid. Such considerations

account for the well-known Thomson and Seebeck effects, described in manv

textbooks. 1,2

However, the conventional theory of thermoelectricity excludes the so-called

Z.,edicks' effect in metals.' This effect is a thermoelectric phenomenon in which a

potential is developed between two points at the same temperature, but separated by

nonzero temperature gradients as described below. it is much smaller than the

Thomson effect, in which a potential is developed between two points at different

zemperatures, and initial experiments demonstrating Benedicks' effect were therefore

inconclusive. 4 Similar observations for semiconductors are less ambiguous. 5

It has been hitherto assumed that large temperature gradients cannot be

produced in metals because of the high thermal diffusivity. But modern acheivements

in short-pulse laser generation and thin-film technology force a change in this
6

perspective. In recent experiments high voltages were measured when a pulsed laser

is used to heat a thin metal film deposited on a grating, creating temperature

gradients as high as 106 K/cm. The complexities of the these experiments are beyond

the scope of this paper, but suffice it to say that Benedicks' effect is one

possible explanation of the observed phenomenon. In this view. the potential is

produced by nonlinear thermoelectric effects caused by differential laser heating.

This possibility prompts the present work, which is the first theoretical account of

nonlinear thermoelectric effects in metals.

Throughout, we assume local thermal equilibrium, without which temperature

would be undefined. If we define a dimensionless parameter w as a measure of the

deviation from local equilibrium, then for the experiment just described, cj can be

estimated as -Z T 0.1, where Z is the electron free path. For simplicity, we

consider metals with one parabolic conduction band, e.g., for Ag, Z 0 10 "5 cm (see

Ref. 7, p. 268), and for the value of UT = 3 x 106 K/cm, we get c = 0.1. Thus c, is

not necessarily small, and it is no longer sufficient to consider only first-order



terms. On this scale, nonlinear terms are essential and can produce measurable

experimental effects. For simplicity, we consider metals with one parabolic

conduction band.

It is well known' that for a bulk metal with a conductivity c, linear non-

equilibrium thermodynamics yields an electric current j as

J - a(Eef f - aVT) 1 (1)

where Eef f is the effective electric field and a is the absolute thermoelectric

coefficient. The Eef f can be written as

Eeff - E + 7( /e) (2)

where E is the external electric field and t is the chemical potential. When

temperature gradients are sufficiently large, then Eq. (1) is insufficient, and

nonlinear terms must be taken into account:

2 3J - a(Eeft - T - a1V(aT) - a 2 VT(AT) - a3V(VT) a 4(VT) .. ) (3)

It should be noted that the concept of local equilibrium is still valid because

otherwise a local temperature T(x) is undefined. This implies that W < 1, as

described in above.

Our task is to evaluate the thermoelectric coefficients ai, for i - 1, 2, .

For this purpose, we use the conventional theory of electron transport in metals,
8

keeping terms up to third order. Let nk be the electron density in k-state. For a

stationary state in the absence of external fields, the Boltzmann equation reduces

to

(vkV)nk - ktcoll (4)



To simply evaluats the collision term on the rhs, we use the conventional r-

approximation 8 and neglect the effect of phonon drag, assuming that the temperature

is sufficiently high. By expanding nk in a series of temperature gradients, we

obtain

0 g + g 3 + g3 +
nk -nk k k ..

where

0 1
k - -E(6)

exp( ) + i

and where ek is the electron energy in the k-state. Substituting Eq. (5) into Eq.

(4) and comparing the terms of same order in both parts of the expression, we get

91 0
k- "T(k)(vkV)nk '(7)

2 1
gk k)(V)g (8)

3 2
gk -r(k)(vkV)gk (9)

We then derive an expression for J, valid for large , as

j - e (gV + g2Vk + gkVk) (10)

The first term in Eq. (10) is familiar from linear thermoelectric theory, 7 '8 and

yields J - -aaVT. The second term vanishes because of symmetry after integrating

over k-space. The third term is of interest here.

In the simplest case of a spherically-symmetric Fermi surface, the integration

over k-space yields
8
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-- ef dSdek 1.(-j)r v)vm 0 (11I 4n3 vk Vk(k k

At high temperatures, the electron free path is limited by electron-phonon

scattering, 7 and r is inversely proportional to T. Then performing simple, but

somewhat cumbersome, calculations, we obtain

14n 2kbr(p) 
2

aI/T - a2/3 - a3/3 " 5me b4 - 0 ,(12)

where r(P) refers to the scattering time at the Fermi energy Y, kb is the Boltzmann

constant, and where terms to order (kbT/P)2 are retained.

We now evaluate Benedicks' effect in metals for the following sawtooth

geometry. Suppose two points, A and B, are at a temperature To, and are separated

by a point C at temperature TI. Let the temperature gradient on the segment (AC) be

twice the gradient along the segment (CB). This system may be approximated by a

triangle-like temperature function, in which case the problem is analytically

solvable.

As usually assumed in the stationary state, there is no current, and therefore

j - 0. From Eq. (3) the electric field can be written as

E - -V( /e) + aVT + a1 V(aT) + a 2 T(aT) + a39(VT)
2  (13)

Then the voltage arising between points A and B is

VAB - 1A E dx- A (-adT d (of + 2a3) )T' 3 dx (14)
A A ~ A 2dT 2 - T ~2 3(4

where A and B are assumed to lie along the x-axis separated by distance A, and T' -

dT/dx.

From (12) it follows that a, - l/T and a2 - I/T2 " Then
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28(nkbToTo )2 T,3  (T -T0 )
3 (To+T,)

VAB - 5me A dx = a T0 ) 1 (15)

1T0

where the 0 subscript refers to values at T., and where the evaluation of the

integral depends explicitly on the geometry described above. If the gradients along

(AC) and (CB) are equal, then the integral vanishes and the effect disappears. If

To - 300 K, TI - 600K, A - 10 Vm, Z 0 -
10 "5 cm and -0 - 10" 6V/K, then VAB z 2 #V.

This very small potential can be measured as follows. A thin, flat metal film is

irradiated by short-pulsed light with spatially modulated intensity, the modulation

stretching over N - 104 periods, and each period assuming the sawtooth geometry.

The modulation must be accomplisied by masking, since interfering laser beams will

alwavs produce symmetric gradients, and hence no effect. Summing the voltage over

104 periods yields V - NVAB = 20 mV, which can be easily measured by conventional

stroboscopic methods.

Experiments with laser irradiation of metal gratings '
9 provides another

interesting example where large temperature gradients arise. In these experiments,

thin transition or semi-metal films are evaporated onto gratings and are illuminated

by pulsed laser light. Unexpectedly high voltages of about i V are measured along

the gratings. One possible reason for this phenomenon may be Benedicks' effect

caused by a laser-induced, periodic but asymmetric temperature distribution similar

to that just described and evaluated for monovalent metals.

Calculations show that for transition and semi-metals, nonlinear contributions

to thermoelectricity are considerably larger because of overlapping conduction

bands. In this case, an inverted conduction band may be regarded as a trap,
7 and

even linear thermoelectric coefficients are one or two orders of magnitude greater

than for monovalent metals. The nonlinear terms increase because of the greater

length required for inter-band transmission of electrons, in particular, because of

longer t:ansmission times from d- to s-zones for transition metals. Detailed

calculations of this will be given elsewhere.

We further remark that as a consequence of Eq. (3), we can see that Jx depends

not only on 8T/Bx but also on the Laolacian. Under laser irradiation of metal

gratings, in addition to the periodic gradients in the x-direction, 106 K/cm along
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the film, high-temperature gradients arise in the z-direction. The value of such

gradients can easily be estimated by aT/8z = (T1 -TO)16 K/cm, where the skin

depth 6 is about 0.05 Pm in the present case. For such gradients, the dimensionless

parameter &) assumes a value greater than i, and we are clearly in the domain of

nonequilibrium thermodynamics. Any description of electron transport in this regime

will require a new physical approach. Further, in the 2-dimensional case VxE is not

necessarily zero in Eq. (13), and for this reason, the J - 0 condition cannot be

assumed. The cold bulk substrate will serve to complete the circuit. Thus a 2-

dimensicnal treatment of thermoelectric phenomena is significantly more complex, and

this very interesting problem will be the subject of further discussion.

In conclusion, we have calculated the nonlinear contributions to

thermoelectricity arising from large temperature gradients in a monovalent metal.

Such contributions play an important role in various transport processes, of which

one example is Benedicks' effect. We have evaluated Benedicks' effect, forbidden in

the linear theory, but which may explain interesting experimental phenomena.

Practical applications could include very small and convenient sensors of laser
10

radiation parameters. This theory can also be extended to double-band metals such

as Ni, Ti, and Bi, where the effects could be significantly greater, and also to

situations where a magnetic field is present.
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